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Summary

Background—Safety and efficacy have been shown in a phase 1 dose-escalation study involving 

a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing 

the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by 

RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in 

treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the 

contralateral eye in patients enrolled in the phase 1 study.

Methods—In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1·5 × 1011 vector 

genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously 

uninjected, eyes of 11 children and adults (aged 11–46 years at second administration) with 

inherited retinal dystrophy caused by RPE65 mutations, 1·71–4·58 years after the initial subretinal 

injection. We assessed safety, immune response, retinal and visual function, functional vision, and 

activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. 

This study is registered with ClinicalTrials.gov, number NCT01208389.

Findings—No adverse events related to the AAV were reported, and those related to the 

procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient 

developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in 

efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, 

pooled analysis of ten participants showed improvements in mean mobility and full-field light 

sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0·0003, white light 

full-field sensitivity p<0·0001), but no significant change was seen in the previously injected eyes 

over the same time period (mobility p=0·7398, white light full-field sensitivity p=0·6709). 

Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the 

second eyes or the previously injected eyes (p>0·49 for all time-points compared with baseline).

Interpretation—To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy 

administered to the contralateral eye. The results highlight the use of several outcome measures 

and help to delineate the variables that contribute to maximal benefit from gene augmentation 

therapy in this disease.

Funding—Center for Cellular and Molecular Therapeutics at The Children’s Hospital of 

Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting 

Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, 

Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby 

Foundation, and The Research Foundation—Flanders.

Introduction

Biallelic mutations in the RPE65 gene—which encodes all-trans retinyl ester isomerase, an 

enzyme crucial in the retinoid cycle—cause Leber’s congenital amaurosis type 2 and other 
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forms of severe retinal degenerative disease.1–4 Proof of principle of gene augmentation 

therapy with a recombinant adeno-associated virus (rAAV) for diseases caused by RPE65 
mutations was established in canine and murine models, and results from these studies5–8 

showed that the biochemical blockade of the visual cycle caused by RPE65 deficiency could 

be overcome. Clinical trials9–11 were initiated after additional efficacy, safety, and dosing 

studies were done in large animals.

Results from our phase 1 study10,12–14 at The Children’s Hospital of Philadelphia 

(Philadelphia, PA, USA) showed safe and stable improvement in retinal and visual function 

in all 12 patients. These individuals had been injected unilaterally and subretinally in their 

worseseeing, non-preferred eyes in a dose-escalation study with doses ranging from 1·5 × 

1010 to 1·5 × 1011 vector genomes of AAV2-hRPE65v2, an AAV vector carrying the wild-

type RPE65 cDNA.10,12 Most participants showed improved light sensitivity, increased 

navigational abilities, improved visual acuity, increased activation of the visual cortex, and 

evidence of improved function and structure of the visual pathways in their injected eye.15 

The patients also had an acquired afferent pupillary defect in the uninjected eye, suggesting 

that the injected (but not the uninjected) retina had been corrected by gene therapy.10,12–15

Research in context

Evidence before this study

On March 24, 2016, we searched PubMed for English language publications between Jan 

1, 1996, and Jan 1, 2016, using the following terms alone and in combination: “retina”, 

“gene therapy”, “AAV”, “adeno-associated virus”, “RPE65”, “clinical trial”, 

“readministration”, “two administrations”, “re-administration”, “vaccine”, and “immune 

response”. Several dose-escalation studies have tested gene augmentation therapy for 

retinal dystrophy caused by RPE65 mutations. Although improvements in various 

measures (visual acuity, visual fields, pupillary light reflex, full-field light sensitivity, and 

navigation) have been reported, none of the trials assessed the safety of administration of 

adeno-associated virus (AAV) vectors to the contralateral eye, even though RPE65 
mutations cause bilateral disease. Furthermore, the variables affecting improvements in 

retinal and visual function have not been clearly defined. Few, if any, successes have been 

reported after repeat administration of AAV vectors in human beings in any organ 

because of immune clearance. Thus, the safety and efficacy of a second administration 

need to be further tested.

Added value of this study

To our knowledge, our study is the first to successfully administer gene therapy to the 

contralateral eye. We showed that administration to the second eye is safe after previous 

exposure to AAV2-hRPE65v2 in individuals with RPE65 retinal disease, even in those 

with pre-existing immunity to AAV2. Repeat administration led to durable improvement 

in functional vision, retinal and visual function, and cortical responses. The ability to 

safely and effectively readminister AAV to the contralateral retina provides an 

opportunity to further increase visual function in individuals with vision impairment.

Implications of all the available evidence
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Our results support the conduct of phase 3 AAV2 gene therapy studies involving 

treatment of both eyes (using the reagent, dose, and volume in our study), as well as the 

use of several different outcome measures. The results also pave the way for cautious 

administration to the second eye in other ocular gene therapy studies, although in some 

contexts it might be advisable to maintain the untreated second eye as an internal control.

After the success of the unilateral injections, we hypothesised that functional vision and 

retinal and visual function could be further improved by delivering AAV2-hRPE65v2 to the 

contralateral, originally better-seeing eye. A chief concern was that humoral responses to 

AAV2 or the RPE65 protein generated after the initial AAV2 exposure could have prevented 

further benefit. More concerning, a cell-mediated immune response might cause 

inflammation and subsequent destruction of the terminally differentiated retinal cells, thus 

permanently removing any pre-existing vision. However, in experiments with large-animal 

models, repeat administrations resulted in efficacy with a high degree of safety.16 These 

encouraging pre-clinical results prompted us to do a follow-on study of the dose-escalation 

trial,12 in which we aimed to assess the safety of second-eye administration, determine 

whether retinal and visual function can be further improved after a unilateral injection, and 

delineate the variables affecting efficacy.

Methods

Patients

We invited 12 patients who had previously participated in the phase 1 dose-escalation 

study12 to take part in this follow-on phase 1 study. Enrolment criteria have been described 

elsewhere;17 briefly, we enrolled 11 of 12 patients from the original study. All surgery and 

follow-up tests were done at The Children’s Hospital of Philadelphia.

The clinical study had been reviewed and approved by the Institutional Review Board of and 

the Institutional Biological Safety Committee at The Children’s Hospital of Philadelphia 

(CHOP). All participants gave written informed consent or, in the case of children, assent or 

parental consent (appendix p 1).

Procedures

Patients received a subretinal administration of AAV2-hRPE65v2 (1·5 × 1011 viral genomes) 

to the contralateral, previously uninjected, eye (ie, the second eye) in a total subretinal 

volume of 300 μL;17 the procedure for subretinal injections has been described 

previously.18–20 The dose and volume corresponded to the highest dose assessed in the dose-

escalation study,12 which was well tolerated and resulted in improvement in several 

parameters of retinal and visual function.20 The targeted region for AAV delivery was the 

central superior retina or macula (figure 1), after verification of the presence of sufficient 

retinal cells through ophthalmoscopy, fundus photographs, and optical coherence 

tomography measurements. Surgical risks were lessened by introducing steps to minimise 

mechanical stress to the fovea.18

Patients were assessed at designated timepoints: at baseline (≤90 days before day 0 [day of 

surgical AAV delivery]) and on days 1, 3, 14, 30, 90, and 180, then once yearly during years 
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1–5. Adverse events and immune response were monitored, and efficacy data for all 

evaluable patients were analysed both individually and in a pooled manner. We used 

Goldmann (light-adapted) visual field tests to measure retinal and visual function, and full-

field light sensitivity threshold testing to measure sensitivity to light over a range greater 

than five log units. Rod photoreceptor sensitivity was measured through the use of white and 

blue stimuli, and cone photoreceptor sensitivity was measured through the use of red stimuli. 

Changes in visual acuity, measured with Holladay off-chart assignments21 in logarithm of 

the minimum angle of resolution (logMAR), were also monitored. Retinal-CNS pathways 

were assessed with a qualitative pupillary light reflex test, and functional vision was 

assessed with a mobility test.18–20 Mobility test videos were graded as pass or fail on the 

basis of predesignated weighting of accuracy and speed data; grading was done at an 

independent reading centre, and the readers were masked to study details, including 

treatment regimen (ie, which eye received the second administration) and light levels. 

Pupillary light reflex assessment was done by the study team, without prior masking of 

participant or visit details, from light-adapted (photopic) tests of alternating stimuli. 

Additionally, improvement in visual function was assessed by the change in activation in the 

visual cortex, measured with functional MRI (fMRI), in response to a contrast-reversing 

checkerboard stimuli, before and after subretinal injections. Acquisition and analyses of the 

fMRI data were done as a separate study, with separate consent and assent required, and 

involved eight participants in this study.17 Short-term results for three of these participants 

were previously reported.17 Additional details are provided in the appendix pp 6–8.

Statistical analysis

For eligible participants, we pooled data and assessed changes in the main efficacy outcomes 

(mobility testing and full-field light sensitivity) and an additional efficacy outcome (visual 

acuity) over time (ie, from baseline to day 30, day 90, day 180, year 1, year 2, and year 3) 

using mixed-effects linear regression models with random intercepts implemented via 

maximum likelihood. Results from these models were reported as changes with 95% CIs 

and corresponding p values. Stata 13.1 (Stata Corporation, College Station, TX) was used 

for statistical analyses, and the significance level was set at 0·05 for all tests. See appendix 

pp 6, 22 for full details. This study is registered with ClinicalTrials.gov, number 

NCT01208389.

Role of the funding source

The funders of the study (initially predominantly the Center for Cellular and Molecular 

Therapeutics at The Children’s Hospital of Philadelphia and then Spark Therapeutics) and 

personnel working for the funders were involved in study design, data collection, analysis, 

and interpretation, and writing of the report. None of the other funding sources had any 

direct role with respect to the design or execution of the study, data collection, analysis, and 

interpretation, or writing of the report. The corresponding author had full access to all data 

in the study and had final responsibility for the decision to submit for publication.
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Results

Between Nov 18, 2010, and Oct 8, 2012, 11 of 12 patients in the original study received the 

injection. One patient (CH13) was not eligible for the follow-on intervention because of 

glaucoma in the second (ie, uninjected) eye. Bennett and colleagues17 have described the 6 

month results from the first three patients (all of whom were adults; table 1) to receive 

injection in the contralateral eye. Ten of 11 patients who received the intervention were 

included in the analysis (table 1). Results from NP04 were excluded in the analysis because 

he had culturepositive (Staphylococcus epidermidis) endophthalmitis after surgery. The 

diagnosis of bacterial endophthalmitis was made on the basis of recovery of pathogenic 

organisms from a vitreous sample obtained under aseptic conditions, an immediate response 

to the application of intravitreal antibiotics despite the discontinuation of systemic 

corticosteroids, and the absence of evidence for immunological response to the AAV2 capsid 

and RPE65 protein (appendix pp 2–4). Although we could not pinpoint the contamination 

with S epidermidis with absolute certainty, procedures were modified to minimise the 

chance of reoccurrence. Importantly, we have not seen this reaction in any of the other 22 

injected eyes in this and the dose-escalation study12 (including ten contralateral eyes, of 

which six received second administration after NP04 did; table 1) or in any of the 58 eyes 

receiving the same investigational agent at the same dose in a phase 3 study.18,19 In all 

evaluable patients, the left retina was injected, except for CH09, who had the right retina 

injected (figure 1).

No adverse events related to the AAV vector were observed. Adverse events related to the 

procedure were mostly mild and included dellen formation (ie, uneven surface of the cornea) 

adjacent to the suture in the early postoperative period in three patients (NP02, CH09, and 

CH10) and cataracts in two patients (CH06 and CH12). The dellens resolved with topical 

treatment, and the cataracts were successfully treated with standard cataract surgery. The 

treatment for bacterial endophthalmitis in NP04 led to elevated intraocular pressure and 

subsequent optic atrophy, which was the only serious adverse event attributed to 

participation in this trial. CH09 has severe myopia (requiring a correction of more than –10 

dioptres) and retinal thinning was noted after injection in the second eye. Compared with 

other patients, CH09 had lower macular volume and thinner fovea at baseline. In general, no 

changes in macular volume or retinal thickness were associated with the administration of 

AAV2-hRPE65v2, even when the injection area included the fovea (data not shown).

The humoral and cell-mediated responses to the AAV2 capsid and the RPE65 transgene 

were benign in all patients, with only one patient (CH10) developing a (low) positive cell-

mediated response to AAV at follow-up week 4 (appendix p 17). CH09 and NP04 had low 

positive results at baseline (ie, before vector injection), but not thereafter. Thus, the low 

positive responses at week 8 (CH10) and week 2 (CH09, NP04) did not occur in response to 

injection. CH10 had no inflammation, and the importance of this isolated event is unknown. 

Two individuals (CH06 and CH10) had high baseline neutralising antibodies to AAV2 

(appendix pp 11, 12, 18, 19) but no inflammation. Systemic exposure to the vector was 

limited (appendix pp 13, 20, 21). In summary, administration of AAV2-hRPE65v2 (1·5 × 

1011 viral genomes) to the contralateral retina appeared safe, irrespective of baseline 

immune status.
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Goldmann visual field tests at baseline revealed islands of responding retina, some without 

foveal fixation (figure 1). Visual fields of one patient (CH11) showed inter-test variability 

that was possibly caused by the perception of phosphenes,22 so that any changes resulting 

from the administration of AAV2-hRPE65v2 were difficult to interpret. In four patients 

(NP02, CH08, CH09, and CH10), qualitative analysis showed expansions of the visual field 

by day 30 that corresponded generally with the area of subretinal injection. In one 

participant (CH10), vision was restored in areas where large scotomas had been present. 

Total visual field area decreased in NP15 over time, but vision in the area generally 

corresponding to the injected region persisted over the 3 year period.

For all other outcomes, results for the second injected eye were compared with results over 

the same follow-up period for the first injected eye—ie, the eye studied in the dose-

escalation study;12 most patients received a lower dose to the first eye than to the second 

eye.

Results from full-field light sensitivity threshold testing show robust improvements in both 

rod and cone function by day 30 in the contralateral eyes, and improvements from baseline 

persisted until year 3 in pooled analyses (p<0·0001 for all timepoints; figure 2A–C; 

appendix pp 22–24). Eight of ten patients showed improvement in sensitivity (figures 3–5; 

table 2). In six patients (NP01, NP02, CH08, CH10, CH11, and NP15), sensitivity to white 

light increased by at least 10 dB in the second eye (CH08’s improvement was close to this 

level); smaller increases in sensitivity to white light were noted in two patients (NP03 and 

CH09; figures 3–5). Sensitivity to blue light increased by at least 10 dB for six patients 

(NP01, NP02, CH08, CH09, CH10, and NP15); smaller increases were noted in two patients 

(NP03 and CH11, figures 3–5). There was no change in sensitivity in CH06 or CH12 

(figures 4, 5). CH11 had a high degree of inter-test variability (possibly because of her 

perception of phosphenes22). Sensitivity to red light increased by more than 10 dB in the 

second eyes of three patients (NP01, NP02, and CH10) and by a smaller extent in five 

patients (NP03, CH08, CH09, CH11, and NP15). Sensitivity to red light increased in the 

initially injected eye of NP02, but the increase was not as much as that in the second eye. 

Improvements in rod photoreceptor responses (ie, responses to white and blue light) were 

larger than those in cone responses (ie, responses to red light; mean changes were white light 

17·9 dB [SD 1·33] vs blue light 17·6 dB [1·41] vs red light 10·8 dB [1·17]). No significant 

changes were seen in rod or cone function in the initially injected eyes during this study 

period (full-field sensitivity to white light p=0·6709, blue light p=0·3112, red light 

p=0·8277; figures 2A–C, 3–5; appendix pp 22–24). In two (NP01 and NP02) of three 

participants who had received low-dose AAV2-hRPE65v2 in their first eyes, large 

improvement was seen after second eye (high-dose) administration, and their first eyes had 

less robust responses (but improved compared with baseline function of their second eyes; 

figure 3), suggesting a dose-response effect.

Changes in visual acuity from baseline to year 3 were not significant in pooled analysis of 

logMAR scores in the second eyes or the previously injected eyes (p>0·49 for all timepoints 

compared with baseline; figure 2D; appendix pp 24–25). Changes were significant (change 

in logMAR ≥0·3 or a halving of the visual angle) in only two patients (CH12 and CH09). 

CH12 showed an improvement of 0·15–0·50 logMAR, depending on the off-chart 
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assignments used (appendix p 27).21,23 CH09 showed an initial decline in acuity that 

remained stable for the duration of follow-up; the deterioration in visual acuity was due to 

myopia-related macular thinning, exacerbated by subfoveal injection. Overall, changes in 

visual acuity were not associated with the involvement of the fovea in the subretinal 

injection.

Results of the mobility test showed an improvement in the second eyes by day 30 

(p=0·0011) that persisted through year 3 (p=0·0002 compared with baseline; figures 2E and 

6; appendix p 22) with observation ongoing, suggesting that patients could complete the 

mobility test more accurately and quickly under lower illuminances than at baseline. No 

significant difference was seen in mobility between baseline of the follow-on study and post-

intervention timepoints in the previously injected eye (p=0·7398). Most patients had 

improved mobility after administration to the contralateral eye (figure 6), with the exception 

of CH06 and CH12, who showed no change in mobility.

After administration to the second eye, qualitative assessment of pupillary light reflex shows 

improvement lasting for at least 3 years in all patients (appendix pp 27–28). Whereas the 

responses were maintained in the initially injected eye, the responses of the second injected 

eyes, which all received the maximal dose, were generally more robust. For example, before 

administration to the second eye, CH09 had strong pupillary light reflexes after stimulus of 

the left (first injected) eye. After injection to the right retina in the follow-on study, 

additional strong responses were seen in this eye after illumination.

Overall comparison of fMRI results at baseline and at 1 year post-administration showed 

significant widespread bilateral activation in all areas of the visual cortex, extending from 

medial to lateral and posterior to anterior aspects of the occipital cortex (figure 7). The 

pattern of activation varied for each individual depending on their age, extent of disease 

progression, or other factors (eg, chronic smoking, which is known to abate cortical blood 

flow and thus the fMRI signal). NP01 had lower cortical activation than other patients, 

which might be attributable to her being a chronic smoker. In all eight patients who 

underwent neuroimaging, cortical activation in response to the high-contrast stimuli 

increased, and responses to medium-contrast and low-contrast stimuli also increased, albeit 

to a smaller extent. See appendix pp 6–8 for longitudinal analysis.

In summary, delivery of AAV2-hRPE65v2 to the second eye resulted in long-term 

improvements in multiple measures of rod photoreceptor function and also a measure of 

cone photoreceptor function in most participants (table 2).

Discussion

Subretinal administration of AAV2-hRPE65v2 to the contralateral eye showed a high degree 

of safety and stable, persistent improvement (for at least 3 years, with observation ongoing) 

in retinal and visual function and functional vision in most patients. Parallel improvement in 

visual cortex responses was seen in all eight individuals who participated in fMRI studies. 

Improvement in subjective and objective measures of retinal and visual function was 

observed as early as day 30.
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Similar to results from animal studies, participants in our study showed strong and stable 

improvements in light sensitivity after contralateral-eye administration of AAV2-hRPE65v2, 

even those with pre-existing systemic antibodies to the AAV2 capsid or the transgenic 

RPE65 protein. With this particular vector preparation, high-dose AAV2-hRPE65v2 can be 

safely administered to the subretinal space of the second eye, with evidence of efficacy. 

Furthermore, no inflammatory response was reported in either eye, and the measured 

immunological responses were benign.

Previously, following administration of AAV2-hRPE65v2, we noted a strong bias towards 

improvement in the short-wavelength (ie, blue) spectrum, which is consistent with an 

improvement in rod photoreceptors.17 This is analogous to the Purkinje phenomenon, which 

occurs during dark adaptation in which the peak sensitivity of the retina shifts from the red 

(cone) to the blue (rod) photoreceptor population.24 Of note, after administration to the 

contralateral retina, eight of ten patients had robust and stable improvement in both cone and 

rod photoreceptor responses; the macula (or a portion thereof) of these patients had been 

exposed to AAV2-hRPE65v2. The improvement in cone function in most patients suggests 

that the chromophore generated by the RPE65 isomerase, made from the RPE65 transgene, 

might activate cone photoreceptors in addition to rod photoreceptors.

The results of our study help to define clinical variables and procedures that might affect the 

magnitude of the outcome. Because RPE65 mutations cause degenerative disease, early 

intervention is expected to lead to greater potential gain. However, if the number of 

remaining photoreceptors is sufficient, even patients in the third or fourth decades of life (eg, 

NP02) could benefit substantially. One young adult (CH06) did not show improvement, 

possibly because of her history of encephalitis and inner retinal abnormalities caused by 

optic nerve drusen. CH06 had high-titre neutralising antibodies to AAV2 at baseline; 

however, another patient (CH10) with high-titre neutralising antibodies did benefit from 

administration to the second eye. Although CH06 has two disease-causing RPE65 
mutations, her heterozygous RDH12 mutation might have also affected her outcome. 

Finally, although retinal thinning associated with high myopia does not prevent benefit (as 

seen in CH09), this effect might make the macula more vulnerable to mechanical stress 

during subretinal injection. The risk to pathological myopes might be minimised by limiting 

the volume of vector injected or by avoiding delivery of the vector in the foveal area.

Six phase 1 dose-escalation trials of interventions targeting RPE65-mediated retinal disease 

have been initiated, three of which have reported on results from the full set of 

participants.12,25,26 The vectors used in the trials differed in several crucial parameters, 

including the method of purification, presence of elements that can affect the level of 

expression, and composition of the excipient.9–12 Two of the trials used constitutive 

promoters;10,11 the third used a weaker promoter that is active only in the retinal pigment 

epithelium.9 Major differences in surgical approaches included delivery volume, regions of 

retina targeted, and perioperative regimens of steroid use; the ages of the participants and the 

extent of photoreceptor degeneration also differed. Differences also existed in outcome 

measures and their analyses.12,25,26 Nevertheless, all three trials showed a high level of 

safety and improvement of retinal and visual function, as determined by increased light 

sensitivity and other parameters.10–12,26,27 Two of the groups used mobility tests in all 
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cohorts to assess participants’ improved abilities to navigate under dim lighting.9,10,12,26 

Most participants tested had additional improvements in pupillary light reflexes10,12 and 

visual cortex responses,14,15 and in dark-adapted perimetry, microperimetry,9 and visual 

acuity.10,12 Jacobson and colleagues,28 reporting on three of 15 participants in their trial, 

described a decrease in light sensitivity after 3 years, although the long-term sensitivity after 

unilateral injection remained significantly higher than that at baseline. Another concern was 

that the degenerative process continued, although improvements in visual function again 

persisted.29 Bainbridge and colleagues26 also reported a decrease in sensitivity in six of 12 

participants after 6–12 months; however, the initial level of improve ment was not as high as 

that reported in other studies, perhaps because the weaker RPE-specific promoter was used. 

Further, the surgical details in this trial9 differed substantially from those in the other trials.

One question that remains relates to the durability of the functional benefit of a one-time 

injection. Cideciyan and colleagues29 have focused on statistical analyses of retinal 

thickness of participants of gene therapy clinical trials in comparison to that in a normative 

(so-called natural history) database, but this database might not account for variables that 

would affect retinal thickness, such as the area of injection or ageing. Jacobson and 

colleagues28 have also focused on measures from microperimetry in the injected eyes of 

three of 15 individuals receiving different doses and volumes of vector and in different 

retinal locations. Of note, fundamental differences existed in the various trials, including 

vector design and purification, use of surfactant, systemic immunomodulation, dosing, 

surgical delivery, and outcome measures used to assess treatment effect. Therefore, to make 

generalisations from results of all the studies is problematic. Importantly, our study included 

a clinically meaningful outcome measure—ie, mobility—and has shown durable positive 

results across multiple measures, with observation ongoing. A second administration to the 

previously uninjected eye—with the same dose, volume, and general target location in the 

retina—clearly results in reproducible, large, and persistent improvements in retinal and 

visual function and in functional vision that is important for vision-dependent activities of 

daily living. A limitation of our study is that the initially injected eyes were the worse-seeing 

eyes, which had received different doses previously in the dose-escalation study. 

Nonetheless, it is now possible to study the durability of effect in a more controlled manner

—namely, in a large, randomised controlled phase 3 study (NCT00999609). In this ongoing 

study, both eyes received the same dose and volume of AAV-hRPE65v2 near simultaneously, 

which will enable the identification of additional variables affecting outcomes.

In summary, this report is the first to show long-term improved functional vision and retinal 

and visual function after repeat gene therapy administration. Efficacy after repeat 

administration of AAVs in human beings has been described in only one other clinical 

trial,30 which used AAV to produce an immune response to vaccinate against HIV.30 The 

immune-privileged nature of the target tissue is likely to contribute to the strong safety 

profile of AAV2-hRPE65v2. Other features also contribute to the safety of the 

administration to the second eye of this particular vector—eg, the relatively low dose of a 

vector that is largely devoid of empty capsids, thereby resulting in a low antigen load.

Following a second administration of this vector, eight of ten participants included in the 

analysis can now navigate under dimmer lighting conditions with their second injected eyes. 
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This clinically meaningful test of functional vision was corroborated by additional measures 

of retinal sensitivity.
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Figure 1. Subretinal areas of second-eye injection and Goldmann visual fields
Scotomas and the natural blind spot are shown in black.
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Figure 2. FST with (A) white, (B) blue, and (C) red stimuli, (D) visual acuity measurements, and 
(E) mobility change score
(A–C) Note that the scales of the y axes are different. The more negative the threshold, the 

higher the sensitivity. (D) Visual acuity measurements are shown as mean logMAR scores 

for each visit. (E) The mobility change score reflects the change in the ability of the patients 

to pass the mobility test under lower illuminance than at baseline. Error bars represent 1 SE. 

Only significant p values (ie, p<0·05) are shown. See appendix p 6 for detailed statistical 

analyses. FST=full-field light sensitivity thresholds.
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Figure 3. 
Full-field light sensitivity threshold results immediately before and after administration of 

AAV2-hRPE65v2 to the second, contralateral eye in patients given low-dose treatment in 

their first eye
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Figure 4. 
Full-field light sensitivity threshold results immediately before and after administration of 

AAV2-hRPE65v2 to the second, contralateral eye in patients given medium-dose treatment 

in their first eye
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Figure 5. 
Full-field light sensitivity threshold results immediately before and after administration of 

AAV2-hRPE65v2 to the second, contralateral eye in patients given high-dose treatment in 

their first eye
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Figure 6. Change in mobility score
Participants are listed according to their original dose assignment when the first eye was 

injected: (A) low dose, (B) medium dose, and (C) high dose. A positive change score 

reflects the ability to navigate more accurately and quickly at dimmer light levels than at 

baseline. See appendix p 6 for detailed statistical analyses. *Mobility testing for NP01, 

CH11, and CH12 was not standardised until their follow-on visits in year 1. All other 

participants began the follow-on study after mobility testing standardisation.
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Figure 7. fMRI results at baseline of the follow-on study and at 1 year after administration to the 
second eye
Participants are listed according to their original dose assignment when the first eye was 

injected: (A) low dose, (B) medium dose, and (C) high dose. Significant areas of cortical 

activations are shown as orange clusters overlaid onto the medial and lateral representations 

of the inflated cortex. Results are presented for the left eye for all but one participant 

(CH09), who received administration to his right eye in the follow-on study. For follow-up 

fMRI results, a stringent statistical threshold of false discovery rate <5%, corrected p<0·004, 

and continuous cluster area ≥100 mm2 was used for all patients (except NP01).14,17 For 

baseline fMRI results, a relaxed threshold of uncorrected p<0·05 and continuous cluster area 

≥50 was used for all patients (except NP15 and NP02) to reveal cortical activations.

Bennett et al. Page 19

Lancet. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bennett et al. Page 20

Ta
b

le
 1

B
as

el
in

e 
ch

ar
ac

te
ri

st
ic

s 
an

d 
re

ad
m

in
is

tr
at

io
n 

de
ta

ils

A
ge

 a
t 

re
ad

m
in

is
tr

at
io

n 
(y

ea
rs

)

R
et

in
a 

in
je

ct
ed

 in
 

th
is

 s
tu

dy

T
im

e 
be

tw
ee

n 
fi

rs
t 

an
d 

se
co

nd
 

in
je

ct
io

n 
(y

ea
rs

)

A
A

V
2-

hR
P

E
65

v2
 d

os
e 

(v
ir

al
 g

en
om

es
) 

an
d 

to
ta

l s
ub

re
ti

na
l v

ol
um

e
R

P
E

65
 m

ut
at

io
ns

O
rd

er
 o

f 
en

ro
lm

en
t 

in
 t

hi
s 

st
ud

y
F

ir
st

 e
ye

Se
co

nd
 e

ye

N
P0

1
29

L
ef

t
3·

43
1·

5 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
G

lu
10

2L
ys

/G
lu

10
2L

ys
3

N
P0

2
30

L
ef

t
4·

22
1·

5 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
G

lu
10

2L
ys

/G
lu

10
2L

ys
8

N
P0

3
23

L
ef

t
4·

58
1·

5 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
A

rg
23

4X
/A

rg
23

4X
9

N
P0

4*
21

R
ig

ht
3·

61
4·

8 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
A

rg
91

T
rp

/T
hr

14
9A

sn
5

C
H

06
25

L
ef

t
4·

38
4·

8 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
IV

S1
+

5g
→

a/
L

eu
34

1S
er

†
11

C
H

08
12

L
ef

t
3·

41
4·

8 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
Ph

e5
30

fs
/P

he
53

0f
s

6

C
H

09
11

R
ig

ht
3·

08
4·

8 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
A

rg
12

4X
/L

ys
29

7d
el

1a
gg

A
4

C
H

10
14

L
ef

t
3·

21
4·

8 
×

 1
010

 in
 1

00
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
IV

S1
+

5g
→

a/
Ph

e5
30

de
l1

ttc
7

C
H

11
26

L
ef

t
2·

04
4·

8 
×

 1
010

 in
 1

50
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
V

al
47

3A
sp

/V
al

47
3A

sp
2

C
H

12
46

L
ef

t
1·

71
1·

5 
×

 1
011

 in
 3

00
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
Ly

s3
03

X
/T

rp
43

1C
ys

1

N
P1

5
14

L
ef

t
3·

28
1·

5 
×

 1
011

 in
 3

00
 μ

L
1·

5 
×

 1
011

 in
 3

00
 μ

L
A

sp
16

7T
rp

/H
is

31
3A

rg
10

Pa
rt

ic
ip

an
ts

 a
re

 li
st

ed
 in

 th
e 

or
de

r 
in

 w
hi

ch
 th

ey
 w

er
e 

en
ro

lle
d 

in
 th

e 
do

se
-e

sc
al

at
io

n 
st

ud
y.

12

* E
nr

ol
le

d 
in

 th
e 

fo
llo

w
-o

n 
st

ud
y 

bu
t n

ot
 in

cl
ud

ed
 in

 th
e 

an
al

ys
is

 b
ec

au
se

 o
f 

ba
ct

er
ia

l e
nd

op
ht

ha
lm

iti
s.

† A
ls

o 
he

te
ro

zy
go

us
 f

or
 R

D
H

12
 S

er
20

3A
rg

.

Lancet. Author manuscript; available in PMC 2017 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bennett et al. Page 21

Ta
b

le
 2

V
is

ua
l a

nd
 r

et
in

al
 f

un
ct

io
n,

 f
un

ct
io

na
l v

is
io

n,
 a

nd
 a

ct
iv

at
io

n 
of

 th
e 

vi
su

al
 c

or
te

x 
of

 th
e 

co
nt

ra
la

te
ra

l e
ye

s,
 c

om
pa

re
d 

w
ith

 b
as

el
in

e 
of

 th
e 

fo
llo

w
-o

n 
st

ud
y

G
ol

dm
an

n 
vi

su
al

 fi
el

d*
C

ha
ng

e 
in

 f
ul

l-
fi

el
d 

lig
ht

 s
en

si
ti

vi
ty

 t
hr

es
ho

ld
 

(d
B

)†
V

is
ua

l a
cu

it
y

M
ob

ili
ty

‡
C

on
ve

rs
io

n 
of

 r
A

P
D

C
or

ti
ca

l a
ct

iv
at

io
n§

O
ve

ra
ll 

im
pr

ov
em

en
t¶

W
hi

te
B

lu
e

R
ed

N
P0

1
G

ai
n

30
40

20
N

o 
ch

an
ge

+
+

+
+

+
Y

es
In

cr
ea

se
d

Y
es

N
P0

2
G

ai
n

50
50

30
N

o 
ch

an
ge

+
+

+
Y

es
In

cr
ea

se
d

Y
es

N
P0

3
G

ai
n

10
10

10
N

o 
ch

an
ge

+
+

Y
es

N
A

Y
es

C
H

06
L

os
s

0
0

0
N

o 
ch

an
ge

N
o 

ch
an

ge
N

o
N

A
N

o

C
H

08
G

ai
n

10
10

10
N

o 
ch

an
ge

+
+

Y
es

In
cr

ea
se

d
Y

es

C
H

09
G

ai
n

10
20

10
W

or
se

ne
d 

by
 ≥

0·
3 

lo
gM

A
R

+
+

Y
es

In
cr

ea
se

d
Y

es

C
H

10
G

ai
n

20
20

20
N

o 
ch

an
ge

+
+

+
Y

es
In

cr
ea

se
d

Y
es

C
H

11
L

os
s

20
10

10
N

o 
ch

an
ge

+
+

+
Y

es
In

cr
ea

se
d

Y
es

C
H

12
N

o 
ch

an
ge

0
0

0
Im

pr
ov

ed
 b

y 
≥0

·3
 

lo
gM

A
R

N
o 

ch
an

ge
Y

es
In

cr
ea

se
d

Y
es

N
P1

5
L

os
s

30
30

10
N

o 
ch

an
ge

+
Y

es
In

cr
ea

se
d

Y
es

N
A

=
no

t a
pp

lic
ab

le
. l

og
M

A
R

=
lo

ga
ri

th
m

 o
f 

th
e 

m
in

im
um

 a
ng

le
 o

f 
re

so
lu

tio
n.

 r
A

PD
=

re
la

tiv
e 

af
fe

re
nt

 p
up

ill
ar

y 
de

fe
ct

s.

* G
ai

n 
is

 d
ef

in
ed

 a
s 

an
 in

cr
ea

se
 o

f 
≥2

0 
su

m
 to

ta
l d

eg
re

es
, a

nd
 lo

ss
 is

 d
ef

in
ed

 a
s 

a 
de

cr
ea

se
 o

f 
≥2

0 
su

m
 to

ta
l d

eg
re

es
.

† V
al

ue
s 

w
er

e 
ro

un
de

d 
to

 th
e 

ne
ar

es
t 1

0.

‡ D
ef

in
ed

 a
s 

th
e 

ab
ili

ty
 to

 n
av

ig
at

e 
at

 p
ro

gr
es

si
ve

ly
 lo

w
er

 li
gh

t l
ev

el
s 

(a
pp

en
di

x 
p 

6)
; t

he
 n

um
be

r 
of

 li
gh

t l
ev

el
s 

of
 im

pr
ov

em
en

t (
ie

, t
he

 a
bi

lit
y 

of
 th

e 
pa

rt
ic

ip
an

t t
o 

pa
ss

 th
e 

te
st

 u
nd

er
 p

ro
gr

es
si

ve
ly

 d
im

m
er

 
ill

um
in

at
io

n)
 is

 in
di

ca
te

d 
by

 th
e 

nu
m

be
r 

of
 p

lu
s 

si
gn

s.

§ M
ea

su
re

d 
at

 f
ol

lo
w

-u
p 

ye
ar

 1
.

¶ D
ef

in
ed

 a
s 

im
pr

ov
em

en
t i

n 
at

 le
as

t t
hr

ee
 m

ea
su

re
s,

 in
cl

ud
in

g 
ga

in
 o

f 
≥2

0 
de

gr
ee

s 
on

 v
is

ua
l f

ie
ld

s,
 g

ai
n 

of
 ≥

10
 d

B
 in

 f
ul

l-
fi

el
d 

lig
ht

 s
en

si
tiv

ity
 th

re
sh

ol
d,

 im
pr

ov
em

en
t b

y 
at

 le
as

t o
ne

 u
ni

t o
n 

th
e 

m
ob

ili
ty

 
te

st
, a

nd
 in

cr
ea

se
d 

co
rt

ic
al

 a
ct

iv
at

io
n.

Lancet. Author manuscript; available in PMC 2017 March 15.


	Summary
	Introduction
	Methods
	Patients
	Procedures
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2

